Lowness Properties of Reals and Hyper-Immunity
نویسندگان
چکیده
Ambos-Spies and Kučera [1, Problem 4.5] asked if there is a non-computable set A which is low for the computably random reals. We show that no such A is of hyper-immune degree. Thus, each g ≤T A is dominated by a computable function. Ambos-Spies and Kučera [1, Problem 4.8] also asked if every S-low set is S0-low. We give a partial solution to this problem, showing that no S-low set is of hyper-immune degree.
منابع مشابه
Reals which Compute Little André
We investigate combinatorial lowness properties of sets of natural numbers (reals). The real A is super-low if A′ ≤tt ∅′, and A is jump-traceable if the values of {e}A(e) can be effectively approximated in a sense to be specified. We investigate those properties, in particular showing that super-lowness and jump-traceability coincide within the r.e. sets but none of the properties implies the o...
متن کاملReals which compute little
We investigate combinatorial lowness properties of sets of natural numbers (reals). The real A is super-low if A′ ≤tt ∅′, and A is jump-traceable if the values of {e}A(e) can be effectively approximated in a sense to be specified. We investigate those properties, in particular showing that super-lowness and jump-traceability coincide within the r.e. sets but none of the properties implies the o...
متن کاملCDMTCS Research Report Series Higher Randomness Notions and Their Lowness Properties
We study randomness notions given by higher recursion theory, establishing the relationships Π1-randomness ⊂ Π1-Martin-Löf randomness ⊂ ∆1randomness = ∆1-Martin-Löf randomness. We characterize the set of reals that are low for ∆1 randomness as precisely those that are ∆1 -traceable. We prove that there is a perfect set of such reals.
متن کاملHigher Randomness Notions and Their Lowness Properties
We study randomness notions given by higher recursion theory, establishing the relationships Π1-randomness ⊂ Π1-Martin-Löf randomness ⊂ ∆1randomness = ∆1-Martin-Löf randomness. We characterize the set of reals that are low for ∆1 randomness as precisely those that are ∆ 1 1 -traceable. We prove that there is a perfect set of such reals.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 84 شماره
صفحات -
تاریخ انتشار 2003